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We formulate a simple model of  the "primordial" scalar field theory in which 
the metric tensor is a generalization of  the metric tensor from electrodynamics 
in a medium. The radiation signal corresponding to the scalar field propagates 
with a velocity that is generally less than  e. This signal can be associated 
simultaneously with imaginary and real effective (momentum-dependent)  
masses.  The requirement that the imaginary effective mass  vanishes, which we 
take to be the prerequisite for the vacuumlike signal propagation, leads to the 
"spontaneous"  splitting of the metric tensor into two distinct metric tensors: 
one metric tensor gives rise to masslesslike radiation and the other to a massive 
particle, 

1. I N T R O D U C T I O N  

There has been considerable interest in recent years in explaining the 
origin of  the mass. The reason for this interest lies in the belief that only 
after we understand "where the mass comes f rom" might we be able to 
construct theories which would unify weak, electromagnetic, strong, and 
perhaps gravitational interactions. 

In this paper  we tackle the question of the origin of  the mass starting 
from a well-known premise: mass and energy are equivalent. What we 
assume here is that primordially energy existed in the simplest, the radiation 
form, and that some primordial metric tensor evolving into a vacuumlike 
metric tensor spontaneously chose the primordial radiation to remain radi- 
ation or to become a massive particle. For the primordial metric tensor we 
choose a tensor that is a generalization of the metric tensor associated with 
electromagnetic radiation in a medium. (Schwinger et al., 1976; Soln, 1978, 
1981, 1982; Watson and Jauch, 1949.) For the sake of completeness, let us 

tHarry Diamond Laboratories, Adelphi, Maryland 20783. 

615 



616 Soln 

write down the metric tensor associated with the electromagnetic radiation 
in a moving medium (Schwinger et al., 1976; Soln, 1978, 1981, 1982; Watson 
and Jauch, 1949). 

r/~*~ = g - ~ +  (1 - r l 2 ) u , ' * u  " 

I1 = ")/u ~/4 = ")/, .y2 = ( 1 -- V 2)- J 
(1) 

Here v is the ordinary velocity of the medium, g*'~ is the usual metric tensor 
with diagonal elements (1, 1, 1 , -1 ) ,  and n, the Lorentz invariant index of 
refraction. It is clear that in regard to the electromagnetic radiation signal 
(Schwinger et al., 1976; Loin, 1978, 1981, 1982), as well as to its becoming 
a confined massive vector boson (Soln, 1981, 1982), the mass of the medium 
is irrelevant. Hence, when we say "a medium at rest," u ~* = (0, 1), we formally 
mean a specific form for rff "~, r /~  = diag ( t ,  1, 1, -n2) .  One can easily see 
that.regardless of what u"  is, n 2= det(~7~)-= r/. Thus with r/"~ as defined 
by (1), n 2 has to be a Lorentz-invariant quantity. Hence, when we conclude 
that a radiation signal becomes a confined (in a medium) massive particle, 
it is clear that this conclusion (and the numerical value for its mass) holds 
equally well in any frame of reference. 

For a primordial medium (filled with a "dense"  primordial radiation), 
r/"~ may depend on two Lorentz-invariant parameters, rather than just on 
one, as is the case with electromagnetic radiation. The primordial radiation 
signal is associated with primordial, say, scalar field ~, which makes the 
discussion as simple as possible. One finds that scalar field q5 has a dual 
nature: it is associated with imaginary and real, generally momentum- 
dependent,  "masses" both propagating with the same velocity. The require- 
ment that the (momentum-dependent)  imaginary mass vanishes, which we 
take to be a prerequisite for the vacuumlike signal propagation, leads to a 
"spontaneous quantization" of  the metric tensor: one metric tensor gives 
rise to masslesslike radiation and the other to a massive particle. 

In Section 2 the specifics of the Lagrangian with primordial scalar field 
q5 and primordial metric tensor r/"~ are given. The "evolution" of the 
primordial medium into the vacuumlike media (containing ordinarylike 
radiation or massive pointlike particles) is discussed in Section 3. How the 
structure of  the primoridal medium can determine what the values of  masses 
of confined particles are, the discussion and the conclusion are given in 
Section 4. In the Appendix details of the formulation of a classical field 
equation in auxiliary Hilbert spaces with basis vectors Ix) and IP) are 
elaborated upon. This formulation allows us to write down simultaneously 
the Lagrangian in x and p representations, which in turn makes it "simple" 
to deal with "nonlocal"  (in x space) metric tensors, if so desired. 
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2. P R I M O R D I A L  M E D I U M  

Let us assume that  pr imordia l ly  we have a m e d i u m  filled with energy I 
in the fo rm of  radiat ion which,  for  simplicity,  we associate with some scalar 
field qS(x). In analogy to a med ium with e lect romagnet ic  radiat ion,  we 
associate with a pr imordia l  m e d i u m  the metr ic  tensor  [ compare  with (1)] 

7 ~ = a g ~ +  3u"u ~, (2) 

where  ~ and  3 are, in general,  two real i ndependen t  and Lorentz- invar iant  
parameters .  As in (1) u"  is the four-velocity of  the m e d i u m  with respect  to 
some arbi t rary f rame of  reference.  We can rewrite (2) in a form similar to 
(1), by not icing that  3 = a ( 1 -  7~-4) ,  where  again 7 = de t (7~) .  Hence  we 
write 7 "" and  its inverse, ( , / - 1 ) ~ ,  as (with ~ and ]3 again being real 
parameters )  

7 ~v= a [ g " ~ +  (1 -]3)u"u v] (3a) 

(7-1) "" = a- '[  g ~  + (1 - ]3-1)u"uV] (3b) 

where ]3 = 7 ~-4,  and in analogy to (1), we take that  ]3 >_0. We notice that  
a and a -1 are overall  mult ipl icat ive factors in (3a) and (3b), respectively.  
(As such, we do not expect  them to play fundamen ta l  roles in the evolut ion 
of  the pr imord ia l  medium.)  

It is clear that  interchange ]3 -~/3 1 (which implies interchanges a ~ a - I  
and 7 ~-~ 7 -  ~) induces interchange 7 ~ 4-~ (7-1) ,~ .  This suggests that  we may  
restrict ]3 as 0-< ]3 -< 1. Namely ,  when 1 <- ]3 -< ~ ,  then  0--- ]3-~ <- 1, and we 
can define ]3 '=  ] 3 - 1 , ,  = a - i  giving 7 ' ~  = (7-1)  "~, which reduces the case 
of  1 -< 13 <- oo back  to the case of  0 <- ]3 <- 1. Thus,  with restriction 0-< ]3 -< l, 
we expect  that  bo th  7 ~ and (~ 1)~  should be used in defining equat ions 
of  mot ion  for  a pr imordia l  scalar field. N o w  in order  that  7 "~ and (7 1 )~  
exist, we require  that  a real ~ also satisfies ~ # 0, • Then because  ]3 -> 0, 
we also have  that  ~t = ]3 a4>- O. However ,  we can still have a p rob lem with 
(7-1)"~ when  ]3 ~ 0. Hence,  the range of  ]3, 0-< ]3 -< 1 will be unders tood  as 
e -< ]3 -< l, with e small  and positive. The limit e ~ + 0 will be unders tood  
when ]3 = 0 is specified. 

Hence ,  viewing classical fields as matr ix  elements  of  abstract  field 
opera tors  (see the Append ix  for details), we couple  abstract  field opera tors  
~b(~) and q,(39) to (7-1)  "~ and 7 ~ ,  respectively. The cor responding  abstract  
Lagrangian  densi ty opera tors  are taken to be 

Z(3~) = - I(D (3~)p. ( 7 -1) "~)Pu~ (x ) ,  (4a)  

-~O(Y)P~7 P~O(Y) (4b) 

Here  we assume that  the specific numerical  values of  the two Lorentz-  
invar iant  pa ramete r s  a and ]3 (or a and 7)  will define the physical  content  
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of the theory. As described in the Appendix, we have that 

[:~*, flY] = ig i*~ (5a) 

[fit., ~v] = ig,~ (5b) 

Clearly from (4a) and (4b) we see that ~b(x) and tp(y) (x and y being 
respective four-coordinates) are primordial fields that correspond to 0 - / 3  -< 
1 and to 1_</3'__o0, where/3,=/3-1. Although fields 4(x)  and 0(Y) corre- 
spond to/3 and/3'  whose ranges are different, because we def ined/3 '=/3- ' ,  
~b(~) and ~b()~) can be related. Namely, L'(fi) from (4b) can be written as 
(for notations, see the Appendix) 

a , 97_, a ^ L'(fi) =-�89 97) �9 (97" P)O(Y) 

which upon comparison with (4a) gives 

~ ( ; )  = ~0(~) (6) 

L( ; )  = L'(33) (7) 

and 
~ = 97r (8) 

However, in order that (8) be consistent with (5a) and (5b), we must have 

= 9 7 ~  (9) 

In view of (8) and (9), it is clear that the corresponding basis vectors are 
related as (see the Appendix) 

Ix)  --  971/2] y) (1 0a) 

IP> = 971/=[p) (lOb) 

In order to arrive at equations of motion in configuration and momen- 

tum spaces, as indicated in the Appendix, we write down the relevant actions 
as 

A = ( 2 ~ ) 4 < p  = 0[L(.~)lp --  0> 

1 =f d4x,~(x)=(--~)4f d4p,SE(p) ( l l a )  

A '=  (2~)4(P = 01L'(~)IP = 0) 

= f  d4y'LP'(Y)=(2;)4I  d4P~' (P)  ( l ib)  

From ( l l a )  and ( l lb )  we conclude that 

~?(x) = - �89 [O~,& (x)](97-') ~'~[O ~05 (x)] ( 1 2a) 

La,(y) = - �89 y)]97/*v(0 ~O( y)] (12b) 



Massless and Massive Quanta Resulting from a MediumUke Metric Tensor 619 

and 
~ ( p )  = -�89 p~6(p) 

~, '(p) = -�89 

(13a) 

(13b) 

a 2 > 0 (22) 

implying 

It is easy to see that 

A '=  rlA (14) 

and 

~0(P) = n6(n" v) (15) 

Restricting ourselves to the equations of motion in momentum space, one 
easily arrives at 

P,~(~q-~)"'P,,6(P) = 0 (16a) 

Pz~7~'~P~(P) = 0 (16b) 

which are satisfied with [cf. (15)] 

49( P ) = a( P)6( P~, ( ~7-1)~'"P,,) (17a) 

~(P) = rla(~l" P)6(P.rl" 'e~) (17b) 

Here a(p) is some Lorentz-invariant scalar. 
Equations (17a) and (17b) imply respective "mass-shell" conditions, 

which we write as 

p~(.q-l)~p~ = a-l[p2+ m2(/3)] = 0 (18a) 

m2(,8) = (1 -/3-1)(p �9 u) 2= (1 -/3-1)to 2 (19a) 

P,,,I~'~P~ = a[P2+ M2(/3)] =0  (18b) 

M2(fl) = (1 ~f l ) (n .  u) 2= (1 -/3)122 (19b) 

where O)o(12o) is p4(p4) in the "rest frame" of the primordial medium, 
too= - ( p .  u) [12o = - ( P .  u)]. The quantities m(/3) and M(/3) can be con- 
sidered as effective, momentum-dependent masses. Because of 0 - f l - <  1, 
they obviously satisfy 

m 2 ( f l )  ----- 0 (20a) 

M2(/3) -> 0 (20b) 

In fact, because p~" = (~/�9 P)", we have 

rn2(/3 ) = -oz2/3M2(/3 ) 

= -a2/3 (1 -/3)12o 2 (21) 
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Hence, only real a ' s  are admitted. As we see, because 0<-fl <- 1, m(fl) is 
imaginary or zero, while M(fl) is real or zero. 

A t  this point we notice that the effective masses m(fl) and M(fl) are 
given directly in terms of  Lorentz-invariant too = - ( P "  u) and ~o = - ( P "  u), 
respectively [equations (19a) and (19b)]. In order to allow for more "compli- 
cated" structures of the primordial medium, we shall take that wo and 12o 
themselves may depend on Lorentz-invariant a and /3 (or r/). However, 
since a is just an overall multiplicative factor in the definition of  r/~'~, 
equation (3a), we expect that only the dependence on/3 (or ~7) is important. 
In what follows, these specific dependences of too and 1"1o on /3(~/) and 
possibly on a will not be denoted explicitly, except when necessary for 
clarity. 

Let us for a moment restrict our discussion to the rest frame of  the 
primordial medium: u~=(O,  1). Here, ~ 7 ~ = a  diag(l,  1, 1, - /3 )  and 
(r/-1) "~= a -1 diag(l ,  1, 1, _/3-1). Now the momenta can be written as 

P6 ~ = (Po, too), Po ~ = (Po, no) 

and mass-shell conditions (18a) and (18b) become 

O~- l ip  2 --/3--10902] = 0 (23a) 

a[P~ -/31~o z] = 0 (23b) 

respectively. Because a # 0, • we solve (23a) and (23b) as 

110/31/2 = SO(.O0 (24a) 

Po = So12o/31/2 (24b) 

where s~ = 1. These solutions are consistent with p~ = (~q. Po)~': 

Po = aPo, too-- aflUto (25) 

Now because m(/3) is imaginary, we shall define the velocity of the primor- 
dial radiation signal associated with ~b(x;po)-exp(ix'po) as a group 
velocity 

Oto... 0 = SOft l/2, W 4 = 1 
w ~  = Opo 

(26) 
Wo = Wo �9 Po 

On the other hand, comparison of  (26) with (24b) immediately gives 

W0 = SO/31/2 =--P~ (27) 
~o 

Relation (27) states that when the effective momentum-dependent  mass is 
real, M2(/3)->0, the velocity of  the corresponding primordial radiation 
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signal, associated here with qJ (y ;  Po) - exp(iy.  Po), is a particlelike velocity. 
In view of 0 -  </3 -< 1, we have the important relation 

Iw01 =/31/2<- 1 (28) 

Now, since under /3+-,/3 -1, m2(/3) and M2(/3) get interchanged, we then 
conclude that when 1 -</3 -< oo, we have 

IWol =/3-1/2 < 1 (29) 

As we see, the primordial field theory as presented here actually limits the 
velocity of  the signal to less than or equal to c. 

However,  we know that the momentum-dependent  masses m(/3) and 
M(/3) are Lorentz-invariant quantities. Hence we expect that the definition 
of velocity of  the primordial radiation signal should be independent of the 
frame of reference. Indeed, by virtue of  (18a) or (18b), we have that 

P 
p" P = O ~ w  = - 2 " P  (30) 

~L 

where in the arbitrary frame of reference we have written the momenta  as 

p~ = (p, p4 = w), p .  = (p, p4 = ~ )  

Hence, with the same reasoning as before, we conclude that the velocity of 
the primordial radiation signal in an arbitrary frame is (notice, 0 <-/3 -< 1) 

0~o P 
w = - - =  w 4= 1 (31) 

Op fF" 

satisfying 

w, rff'~ w~, = 0  (32) 

Again we see that w is simultaneously a grouplike velocity (in momentum 
p~) and a particlelike velocity (in momentum P") .  Furthermore, from 
equation (32) we see that indeed -O ~ is a metric tensor of  a primordial 
medium filled with primordial radiation. [When 1 <-/3 <- ee, then understand- 
ably (r/-~) "~ is a metric tensor which can be transformed back into r/"~ 
with/3 ~*/3-1.] 

Now we would like to find how w0 and w are related. This is most 
easily found by means of Lorentz transformations which take us from the 
rest frame of the primordial  medium to an arbitrary f r ame- - a  frame with 
respect to which the primordial medium is moving with four velocity u ~. 
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The necessa ry  t r ans fo rma t ion  matr ices  are  

U i 
A~. = g ~ . +  (u . _ g 4 ~ ) ,  A 4~ = - u  ~ (33a) 

l + y  

? ~ "  = A ~"(u --> ~), if" = y ( - v ,  1) (33b) 

g.~A O. A ,~  = g . ~  o. ~ , ~  = gp~ (34) 

go~rA~ ~'~ = g p ~ A P " A ~  = g"~ (35) 

M o m e n t a  P~  and  Po ~ are  re la ted  as 

. . . .  P ~ =  = A P~ 

giving specif ica l ly  [cf. (24b)] 

Pi="o{yVi+/31/2[s~-tvi(y-1)(s~ " v  2 v)]} 

12 = yflo[1 +/3 ~/2(So. v)] (36) 
By vir tue o f  (31) we have 

yv~v +/3 ~/~[ V~So + v(y - 1)(So. v)] 
W- -  ,)/,/)2[ 1 .ol_/31/2(S0 " u  

w 4= 1 (37) 

Because  P .  rl" P is a Loren tz - invar ian t  quant i ty ,  P -  r t �9 P = Po " 7/0 �9 Po = 0, 
so w" f rom (37) satisfies (32) explici t ly.  Also  we have that  Jw]-< 1. Veloci ty  
w d e p e n d s  on  the d i rec t ion  o f  P. I f  we fix P,  then  rla(~7 �9 P )  f rom (17b) is 
u n d e r s t o o d  to be sha rp ly  p e a k e d  ( & l i k e  func t ion)  a r o u n d  this P. One  shou ld  
also not ice  tha t  whi le  w d e p e n d s  expl ic i t ly  on /3 ,  it does  not  d e p e n d  on a. 

3. EVOLUTION OF THE PRIMORDIAL MEDIUM 
I N T O  T H E  V A C U U M L I K E  M E D I A  

We def ine  a c lass ica l  v a c u u m  as a m e d i u m  in which  no imag ina ry  
masses  ( d e p e n d e n t  or  i n d e p e n d e n t  o f  m o m e n t a )  occur.  Since for  0-</3 -< 1, 
rn2(/3) -< 0, this  means  tha t  we are  look ing  for  t hose /3 ' s  for  which  m2(/3) = 0. 
F u r t h e r m o r e ,  on  phys ica l  g rounds  we assume that  fl0 is finite for  0---/3 -< 1 
(in pa r t i cu la r ,  1 ~ o # ~  for  /3 = 0  and  1). Then  by  vir tue o f  equa t ion  (21), 
rn2(/3) = 0 fo r /3  = 1 or  0. This  in turn leads  to " s p o n t a n e o u s  qua n t i z a t i on"  
o f  rl ~ into two d is t inc t  met r ic  tensors:  

~7~(/3 = 1) = a g  ~ (38) 

B""(/3 = 0) = ~g+ ~ , g~+~=g""+u"u " (39) 
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So far the only constraint on ~ is that it has to be real and different 
from 0 and +oo [cf. (3a) and (3b)]. Hence, for either of cases (38) and (39) 
it would appear that the choice of lal = 1 makes the whole discussion as 
general as it can be. In regard to (38) and (39), we shall decide on specific 
values for a by carrying out the quantization of corresponding fields. Next 
we analyze cases (38) and (39) in somewhat more detail. 

Setting ~3 = 1 in (8), (13a), (13b), and (15), we obtain 

1 
5r 13 = 1) = -~-a  q~(-P)P~'g~P~q~(P) (40a) 

~ ' ( P ; / 3  = 1) = - ~  + ( - P ) P ~ g  P~b(P) (40b) 

p~ = a P  ~ (41a) 

y"  = ax ~' (41b) 

( ~ ( P )  = ot4q~(p) (41c) 

As we see, the case of /3  = 1 clearly corresponds to a massless radiation 
since m = M = 0  [cf. (19a) and (19b)]. Furthermore from (37) we obtain 

Soy2 +v[Yv 2+ ( Y -  1)(So. v)] 
w(/3 = 1) = yv2(1 +So" v) (42a) 

Iw(/3 = 1)1 = 1 (42b) 

where (42b) holds regardless of what the directions of v and So are. Hence, 
with/3 = 1 the radiation signal clearly propagates with the velocity of light 
regardless of  what the reference frame is and regardless of whether 
Lagrangian (40a) or (40b) is used for its description. In fact, Lagrangians 
(40a) and (40b) are basically the same except that momenta which enter 
into them are rescaled with respect to each other. (The theory is invariant 
under scale transformations since m = M = 0.) 

Let us now decide on the value for a in (40a) and (40b) by quantizing 
~b and qJ. Consistent with the canonical formalism (Nagy, 1966), we obtain, 
separately for ~b and ~0, in momentum spaces (Bogoliubov and Shirkov, 
1980; Loin, 1983) 

[6 (P) ,  6 (P ' ) ]  = ia(2~')46(4)(P + p e ) O ( p )  (43a) 

i 4 
[6 (P) ,  6 (P ' ) ]  = - -  (27r) fi(4)(P+ P ' ) D ( P )  (43b) 

Oz 

D (  k ) = - i4~e ( k 4) 6 (k2), 
(44) 

e(k 4) = ~O(k 4) - O ( - k 4 ) ]  
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When apply ing  (41a) and (41c) to (43a), we must  obtain (43b). By taking 
into account  that e (ak  4) =(a/ la[)e(k4) ,  we see that this will happen  if 
[a[3a = 1. The only real a that  satisfies this is a = 1. Hence,  the resulting 
field theory  will be described with the positive metric in Hilbert space. 

Let us now turn our  at tention to the case when/3  = 0. N o w  r / " ~  ag+ "~ 
[equat ion (39)] where g ~  satisfies ~ o~_ ~ . g+pg+ - g + , ( g +  u) " = 0 . T h u s u - p =  
~xu- g+-  P = -wo  =0 .  Since m(/3 = 0 )  = 0 ,  we also have p2 =p~ = 0 [cf. (18a)], 
which then also implies p ~ = 0 .  Now applying Lorentz  t ransformat ions  
[equat ion (33b)] to p~ = 0, we obtain that in any frame p "  = 0 = a ( g+ �9 P)~ = 
a[P ~ + u~(u �9 P)]. Hence fo r /3  = 0 we have 

and 

p"  = 0 (45) 

P~" = u"f~o(/3 ~ 0) (46a) 

M(f l  = 0) = flo(fl ~ 0) (46b) 

where rio(/3 ~ 0) = lira 120(/3), as/3 ~ 0 if 1)o depends  on/3.  By sett ing/3 = 0 
in (36), one  verifies (46a) directly, while f rom (37) one obtains 

w(/3 = 0) = v (47) 

It is evident that  the pr imordia l  radiat ion signal becomes confined in the 
pr imordia l  med ium for  which /3 = 0. This signal behaves like a massive 
particle whose  mass is s imply the angular  f requency,  i2o, in the rest frame 
of  the pr imordia l  medium. 

Next  we investigate what  is the trajectory that this confined massive 
particle follows. This particle is located at space-t ime point  x "  which is 
formally complementa ry  to p~" -- 0 [of. (4a)]. Another  space-time point,  y" ,  
which is formally complementa ry  to P~ [cf. (4b)], is given as y~ = o~( g+ �9 x) ~ 
when /3  = 0. With x 4 = tx, y4 = ty, etc., we can write 

t~ = a - l t y  + T'r (48a) 

x = a - l y +  yvz  (48b) 

o o = - ( x .  u), with ~" being the p roper  time. where t y = - ( y ,  u ) = 0  and t x = T  
One easily sees that (48a) is consistent with a Lorentz  t ransformat ion relating 

o _ 0, with (33a) and (33b) we see that ty = v .  y ~- and t~. Namely ,  because t y -  
and y = YYo. Here the posi t ion o f  the particle in the rest f rame of  the medium 
with/3  = 0 is Xo = a- lyo.  Combin ing  these facts with (48b), we obtain 

ty = a ( x .  v -  7v27) (49) 

which, when combined  with (48a), yields 

~-= y(t~ - v .  x) (48a') 
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Finally we write (a8a) and (48b) as 

tx = 3 , ( a - ' v  �9 yo+ ~-) (50a) 

x =  y(a-~yo+vr) (50b) 

Equat ion  (50b) is a s ta tement  about  the evolut ion of  the posi t ion of  the 
part icle in an arbi t rary f rame,  where the part icle was located at xo = a-~yo 
in the rest f r ame  of  the medium.  (One notices that  if Yo = 0 is chosen then 
y = O, ty = O, t x = y'r, and x = yvz.) Finally, since a-1  is essentially rescaling 
Yo we could put  a = • 1. 

Despi te  the fact that  '0,v becomes  essentially a project ion tensor,  we 
can still describe a confined massive particle in a /3 = 0 m e d i u m  with a 
Lagrangian.  To do so we notice that  getting u ~" off the "mass  shell ," u 2 # - 1 ,  
means  getting P "  off the mass  shell, p 2 #  _ M 2. N o w  

P.  '0(fl = 0 ) .  P =  a(p2+Mz)(P2/M 2) 

Clearly,  

P" "0(/3 = 0 ) - P / ( n 2 + M 2 ) - ~ - a ,  as P2~-M2 

Therefore  for  37 ' (P; /3  = 0) we can s imply write 

~ ' ( P ;  13 = 0 )  =-~ d/(-P)(P2+ M2)~b(P) (Sl)  

In analogy to the/3  = 1 case, the quant izat ion of  q,(P) now requires (Nagy,  
1966; Bogol iubov and Shirkov, 1980; Soln, 1983) 

[qJ(V), qJ(P')] = - / ( 2 A ) 4 6 ( 4 ) ( p  + p ' ) A ( p ;  M 2) 
OL 

(52) 
A(p, M 2) = -i4rre(pa)6(p2+ M 2) 

Hence,  if consistent  with the [3 = 1 case the value of  a is fixed as a = 1, the 
resulting theory  for the /3  = 0 case (massive particle) will be  descr ibed with 
the negat ive metr ic  in the Hi lber t  space. 

We know that  mos t  quan tum theories with massive particles are 
descr ibed with posit ive metrics in their  respective Hi lber t  spaces.  N o w  we 
would like to know whether ,  at least in the mathemat ica l  sense, it is possible  
to find a as a funct ion of  '0 which allows us to have posit ive metrics in the 
Hilber t  space  when /3 ~ 0, +0o. Keeping  in mind  that  originally /3 and "0 
were a l lowed to vary be tween zero and plus infinity, we write for  a the 
fol lowing expression:  

~(n, no)= 0(1 - n )  n - n o  + n o ' - n  0 ( ,  - 1 ) [ ,  - no ' l  
(53) 

0 < ' 0 o < 1 ,  '0->0 
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Taking into account that 0(1 - n -1) = O(n - 1) and 0(77 - 1 -  1) = 0(1 - 7/), 
we see that 

~(n,  70) = a ( n - ' ,  To) = a - l ( n ,  To) 
(54) 

a2 (n ,  TO) "~ 1 

Hence, because of (54),/3 = n [compare with the text after relation (3b)]. 
One easily verifies that 

1, n > 7o 
e-< n-< 1 - e' e-> +0: a ( n '  n~ = - 1 ,  n<-qo (55a) 

1, n < ,70 ~ 
l + e < - n < - + ~ ' e ~ + O : a ( n ' n ~  -1 ,  ~q>no ~ (55b) 

When a primordial  medium with some n evolves into the usual vacuumlike 
state, then n will spontaneously choose 0, l, or +oo. Now as long as the 
evolution of  a is governed by (53), then according to (55a) and (55b) the 
limiting a will be such that the resulting theory can be quantized with a 
positive metric. 

An interesting situation develops if a is simply fixed at -1  throughout 
the evolution of  the medium. Then case n = 1 (/3 = 1), which requires a = 1 
for its quantization, would be excluded from the values that n can assume 
spontaneously;  only ~--> 0 and +oo would be allowed. In this case all of  
the energy in the medium would end up in masses of  confined particles. 

4. STRUCTURE OF T H E  M EDIUM,  DISCUSSION,  
AND C O N C L U S I O N  

What we mean by the "structure" of  the primordial medium is how it 
behaves as a function of/3. The basic structure, of  course, is given by tensor 
n ~ ,  while the additional structure is given by the dependence of rio (or 
o%) on/3. 

Working within the usual restriction on/3,  0_</3 < 1, we then say that 
the primordial  medium is of  the basic, or simplest, structure if [1o is 
independent  of/3. Now M2(/3 = 1) = m2(/3 = 1) =0 ,  and M2(/3 =0)  = 122 and 
m2(/3 = 0) = 0, as expected. Hence, any [~o becomes the mass of  the confined 
primordial  radiation signal when 13--> 0. 

A very interesting structure of  the primordial  medium is obtained if 
we choose 

1~o2(fl) = 1%2(0) 0--- /3<1 (56a) 
1-/3' 

f~o2(/3)-- ~ ( 1 ) ,  /3 - 1 (56b) 
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Here, consistent with the discussion preceding equations (38) and (39) we 
have chosen for f~o at /3 = 1 some finite value l~o(1). The corresponding 
values for M2(/3) are then 

M2(/3) = ~~2(0), 0-</3 < 1 (57a) 

M2(/3) = 0, /3 = 1 (S7b) 

As we see, the structure of  the primordial medium now is such that M(/3) 
is independent of /3  [and f~o(/3)] except at 13 ~ 1 when it goes sharply to 
zero. As a consequence, one could then conclude that for any/3 (0-</3 < 1) 
the radiation signal is confined whose mass is M = f~o(0). However we have 
to remember  that for a truly confined signal m(/3) has to vanish. Since 
m2(/3) =--O/2/3~c~2(0), we see that this will happen only for /3 = 0. Hence, 
only/3 = 0 is the medium with a confined pointlike particle whose mass is 
ado). 

The fact that M(fl)  is independent o f /3  when 0-</3< 1, makes the 
primordial medium very much like a medium of the collisionless isotropic 
electron plasma where f~o(0) becomes a plasma frequency. To see this let 
us look at an electromagnetic wave moving through such a p lasma which 
has a quality of  an ideal charged electron fluid with constant density in the 
configuration space. The four-vector electric current densities in the con- 
figuration and momentum spaces are, respectively, 

j~(y)  = eNp~(y)  (58a) 
me 

j~( P) = eNp~e ( P) (58b) 
me 

where m e is the electron mass, N the number  of  electrons in cm 3, and 
configuration and momentum space four-momenta of  the electron are given, 
respectively, as 

p~(y) = me u~ (59a) 

p~ ( P ) = meu~ ( 2,n" )4 ~(4)( P ) (59b) 

Relaxing the mass-shell condition for P~, equation (18b), we write now 
equation (16b) for electromagnetic potential A~'(P), however, modified 
with the source current term (Soln, 1982) as follows: 

PorY'PoA~ ( e)  =j"  ( P) (60) 

where j " (P)  is given by (58b). In equation (60), ~"~ has /3 = n 2, with n 
being the index of refraction, 0 -  < n <  l, while a is simply absorbed into 
j r ( p )  (which is equivalent to setting a = 1). We see that P .  ~7" P ~ 0 only 
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for P " =  O, while P .  ~/. P = 0 otherwise. Clearly, (u .  P )=-1)o( /3 )  is still a 
Lorentz-invariant quantity and choosing for it form (56a), which makes 
M(/3) independent of/3, we obtain 

[p2 + f~g(0)]a" ( e )  = eNp'e  (P) (61 ) 
me 

Forcing now equation (61) to be written in the "minimal gauge" form 

p2A~ (P) = eN[p~e(P ) - eA ~ (P)]  (62) 
me 

we obtain 

e2N 
1)2(0) = 

me 

which is the plasma frequency squared. As we see, the source current in 
equation (60), which is different from zero only for P~' = 0, is a very useful 
tool for numerically evaluating I~o(0). Otherwise, the radiation signal 
behaves like a "freelike" signal (for P "  ~ 0) whose confinement into a 
massive pointlike particle occurs only for/3 = 0 (Soln, 1981, 1982). 

One of  the more interesting points of this primordial field theory model 
is the fact that the velocity of primordial signal can never exceed the velocity 
of light. The significant point, however, is that the primordial medium in 
which the energy appeared in the radiationlike form is allowed to evolve 
into a vacuumiike media in which the energy appears in the pure radiation 
form (/3 = 1) and the massive form (/3 = 0). We believe that in high-energy 
collisions qualitatively one is creating within the interaction region many 
primordial-like media which after some time all become vacuumlike media 
with pure radiation or massive particles. These primordial media carry many 
attributes, such as charge, spin, isospin, and the like, which themselves may 
have a say as to what kind of f~o will be confined into a mass. 

A P P E N D I X  

If one wishes to be able to describe classical fields simultaneously in 
configuration and momentum spaces, then the notions of auxiliary Hilbert 
spaces with basis vectors Ix) and IP) are very useful. These basis vectors 
satisfy 

(NIX') = ~(4)(X -- X;) (A1)  

(pip') = a ( , ) (p -p ' )  (12) 

1 
(xlp> = ~ exp(ix �9 p) (13) 
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and 
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f d4xlx>(xl = J d4pip)(pl = 1 (A4, 5) 
; 

where (A4) and (AS) are the completeness relations. The position and 
momentum operators, ~" and/3", satisfy the following commutator: 

[ :~, /3~] = ig ~ (A6) 

where g'~ = diag(1, 1, 1, -1).  Some further useful relations consistent with 
(A1)-(A6) are 

<xlo~lx'> = x " ~ ( . > ( x  - x ' )  

1 0 
<xl/3" }x'> = : ( x - x ' )  = -  - -  i Ox~, 

x " f p - p ' )  (p{~'~lp'> 

(P}/3~ {P'> = P~6(4>(P -P') 

~(4)(X--X r ) 

(A7) 

(A8) 

i o 
8(4>(p - p ' )  (A9) (2~r) 4 ap~ 

(A10) 

Now, to a classical field we can associate abstract field operator ~b(2) 
with matrix elements [cf. (A9)]: 

(X[6( ;)IX t> -~" ~(X)~(4)(X --X') (A11) 

1 
(PlCb(;)IP') = ~ - ~  c~(p -p')  (A12) 

With (A3)-(A5) one easily verifies that 

~b(x) = ~ - ~  dap~(p;x) 
(A13) 

~b(p; x) = th(p) exp(ip, x) 

To a Lagrangian we now associate the Lagrangian abstract operator which 
may explicitly depend on/3 ~" while its dependence on ~ comes only through 
6(2):  

s = L[6(~) ;/3] (A14) 

The action is now given as 

a = (27r)"(01s 

=Id4xs d4p,LP(p) (A15) 

lo> ~ Iv = o> 
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where ~ ( x )  and ~f(p) are Lagrangians in x and p spaces, respectively. The 
equations of  motion are derived by imposing that the variation of the action, 
6A, be zero when a small variation of the abstract field operator, 6~, was 
made: 

6A = (27r)4(016/~[0) = 0 
(A16) 

From 84~(s we can define Sob(x) and 8qb(p) [cf. (Al l )  and (A12)], which 
are assumed to vanish at four-dimensional infinities in x and p spaces, 
respectively. 

A simple but relevant example is 

/~, = -~b(~)/Jg~b (~) + M2~b2(~)] (A17) 

Because/~10) = 0, we can replace ~b/324~ with [~b, pu][p , 4~] = (0~,~b)(0~'~b). 
Hence 

~ ( x )  = - l{[0~b (x)] 2 + M2~b 2(x)} (AI 8) 

Similarly 

~(p)  = -~(9(-p)p26(p)  + M2ch(-p)6(p)]. (A19) 

The advantage of  this formalism is evident when/~ becomes a complicated 
function of /~",  as in the case of  the dispersion of electrodynamics in a 
dielectric medium (Watson and Jauch, 1949); one can still deal with such 
a theory straightforwardly if one works in the momentum space (Soln, 1981, 
1982). 

In the text on various occasions we have used the generalized definition 
of  a "dot  product"  for contracting indices between vectors and second-rank 
tensors. This generalized definition is explained here with a ~, b ", and T"~: 

a. b = a~b ~, (a" T)~ = a~T~, (T. b) ~ = T~b~ 

a. T. b= a,T"~b~, b. (a. T) = a. T. b (A20) ~ 

( T . b ) . a = a .  T . b  

When we transform position and momentum operators ~ a n d / ~  into 
39" and /3~, respectively, commutator (A6) must remain invariant. Hence 
we can write 

~ = t ~  ~, /$~ = t~ /~  (A21) 

where t~ is some transformation matrix. Since also y~ = ( t .  x) ~ and p~ = 
(t. P)~, then from completeness relations 

f d4yIY)(Y]= f d4xlx)(x[=l 
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a n d  

I d4PIP)(P[~- I d4pIP)(P[:I 
we c o n c l u d e  

where  t = de t ( t~ ) .  
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Ix) : tl/21y), IP) = tl/21p) (A22) 
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